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LElTER TO THE EDITOR 

Electrostatic boundary corrections for unscreened point charges 

A H Guerrero? and Claude M Penchina$ 
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, 
USA 

Received 29 July 1988 

Abstract. We present a ‘correction’ method to match electrostatic boundary conditions for 
the Poisson equation in the presence of unscreened interior point charges. This method 
is applicable to any general electrostatic boundary conditions, is independent of the 
geometry of the boundaries, and is well suited to numerical computation. It is based on 
correcting the changes in boundary values caused by the presence of the point charges. 
Thus, the corrected boundary conditions include not only the effects of all exterior charges, 
but also the effects of the interior point charges. 

Boundary conditions are frequently used in the solution of electrostatic problems to 
replace the complicated effects of charges located outside the boundaries. Many 
standard techniques exist for solving the Poisson equation while matching the boundary 
conditions to obtain unique solutions to the problem. The matching of these boundary 
conditions can be difficult in situations where point charges are included within the 
boundaries. A popular method used to compute the long-range Coulomb potential of 
a collection of point charges within boundaries is the method of images, which uses 
the Ewald summation technique [ 1,2]. 

We present here an alternative ‘correction’ method. This method is applicable to 
any general electrostatic boundary conditions, is independent of the geometry of the 
boundaries, and is well suited to numerical computation. It is based on correcting the 
changes in boundary values caused by the presence of the interior point charges. 

The ‘correction’ method was applied [3,4] in a ‘molecular dynamics’ [5] simulation 
of the dynamically correlated scattering of unscreened mobile point charges. These 
mobile charges scattered from each other and from fixed point charges. 

The electrostatic potential everywhere within a volume is uniquely determined by 
the charge distribution within the volume and by the boundary conditions at the surface 
(see any standard textbook on electricity and magnetism, also [ 6 ] ) .  These boundary 
conditions are specified in terms of either the electrostatic potential at the surface, or 
the normal component of the electric field thereon. 

If the electric charge within the volume is everywhere zero, the potential inside is 
found from the particular (unique) solution of the (source-free) Laplace equation 
within the volume, which also satisfies the boundary conditions specified at the surface. 
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If the electric charge within the volume consists of a finite charge density p ( x ,  y,  z )  = 
p ( r ) ,  then one proceeds in a similar fashion. One chooses from the solutions of the 
Poisson equation for the given charge (source) density within the volume, the (unique) 
solution which satisfies the given boundary conditions at the surface. 

That part U,(A) of the electrostatic scalar potential U(A) at a point A =  
( A x ,  A,, A z ) ,  which is due only to point charges of charge Q, at points ‘J = (xl, y,, z,) 
inside the volume, is found from the sum of the individual Coulomb potentials of the 
interior point charges, Q,, where E is the permittivity of the medium, 

Ul(A) =c (Q1/4.ir&lA - r,l). (1) 
I 

This potential U,(A) is in fact a solution to the Poisson equation with delta function 
sources at points r,. 

That part U2(A) of the electrostatic scalar potential at a point A = ( A x ,  A,,, A , )  
inside the volume, which is due only to charges on and outside the surface of the 
volume, could be found in the same way as for interior charges, if the positions and 
strengths of all external charges were known. However, the positions of the external 
and/or surface charges are changed when the positions and/or strengths of the interior 
charges are changed. 

If the electrostatic scalar potential U ( B )  at all boundary points B = ( B x ,  B y ,  B,) is 
specified as a boundary condition 

U ( B )  = UB(B) (2) 

(as is usually done for conducting boundaries) then one is tempted to seek a solution 
by adding (linear superposition) to the potential U1 of (l), the potential U, found by 
solving the Laplace equation subject to the boundary potential U,(B) .  However, the 
potential at the surface would then be U ( B )  = UB(B) + U , ( B ) .  To ‘correct’ for this 
error, we seek instead the potential U, found by solving the Laplace equation subject 
to the boundary potential 

= - ( 3 )  

The potential U ( A )  

= Ul(A)+ (4) 

is thus a solution of the Poisson equation everywhere inside the volume for the given 
sources. From (3) and (4) we see that it has the correct value 

( 5 )  U ( B ) =  U1(B)+ U2(B)= Ul(B)f UB(B)- U l ( B ) =  UB(B) 

at the surface. Hence, it is the unique solution of the problem. 
If instead of the potential UB(B)  at the boundary, its normal gradient at some or 

all boundary points B = ( B x ,  B,,, B,) is specified as a boundary condition (as is usually 
done for boundaries of high symmetry) then one can proceed in a very similar way. 
Since the electrostatic field is found from 

E = -grad U ( 6 )  

it is E,(B) ,  the normal (n) component of E evaluated at those boundary points B 
which is specified. 
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We seek now the potential U2 found by solving the Laplace equation subject to 
the boundary potential 

U2(B) = UEdB) - U , ( B )  (7) 

wherever the boundary potential is specified, and subject to 

= - (8) 

wherever the normal gradient of the boundary potential is specified. These correction 
terms - U , ( B )  and - E , , ( B )  ensure that the total potential U ( A )  of (4) matches the 
specified mixed boundary conditions. 

If the electric charge within the volume consists of both point charges and a finite 
distributed charge density p ( x ,  y ,  z )  = p ( r ) ,  then one proceeds in a manner similar to 
that described above. However, one now solves the Poisson equation (instead of the 
Laplace equation) for U,, taking into account only the distributed charge density 
(without the point charges) and subject to the boundary conditions corrected for the 
interior point charges. The total potential U ( A )  of (4) is then a solution of the Poisson 
equation for all the charges in the interior, and matches the specified mixed boundary 
conditions. 

Our method may be summarised as follows. The unique electrostatic potential for 
a closed system of point charges and distributed charge density, for the case of general 
mixed boundary conditions, is found from 

U ( A )  = U , ( A )  + U2(A) (4) 

where U , ( A )  is the potential due to the interior point charges alone, 

and U,(A)  is the potential found from the solution of the Poisson equation, neglecting 
the interior point charges, and replacing the actual boundary conditions, U ( B )  = UB(B) 
and E, (B)  = EnB(B), by ‘corrected’ boundary values: 

‘corrected’ U ( B )  = UB(B) - U , ( B )  

‘corrected’ E, (B)  = EnB(B) - E , , ( B ) .  

(7‘) 

(8‘) 

The ‘correction’ method for solving electrostatic boundary value problems in the 
presence of point charges provides a simple use of linear superposition. The solution 
may be found from the Coulomb potential of the point charges, added to the solution 
of the Poisson equation ‘neglecting’ the point charges in the source term. The ‘error’ 
caused by ‘neglecting’ the point charge source terms is ‘corrected’ by modifying the 
boundary potential or the normal component of the boundary electric field. This 
procedure has the advantage over image methods, in that it allows for the use of the 
usually very efficient Poisson equation solvers without modification. 

We see that our ‘correction’ method is a natural extension of the general philosophy 
of using boundary conditions. Traditionally, one replaces the effects of all the exterior 
charges by boundary conditions; in our ‘correction’ technique, we replace the effects 
of these exterior charges and the effects of the interior point charges by ‘corrected’ 
boundary conditions. 

This work was supported in part by NOSC contract N66001-85-M-5120, and NOSC 
contract N66001-85-0203 through SDSU. 
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